Generalization and Characterization Techniques for the Anomaly-based Detection of Web Attacks

2008. 05. 26
Distributed Multimedia Computing Lab.
Minjae Cho
popeye@ece.hanyang.ac.kr

Paper Information

- Title
 - Using Generalization and Characterization Techniques in the Anomalybased Detection of Web Attacks

- Authors
 - William Robertson, Giovanni Vigna, Christopher Kruegel, and Richard A. Kemmerer
 - Computer Security Group (formerly Reliable Software Group)
 - Dept. of Computer Science, University of California, Santa Barbara
- Published
 - **13th Network and Distributed System Security Symposium(NDSS06)**
 - San Diego, CA. Feb. 2006
 - http://www.isoc.org/

Outline

- Introduction
 - Web Applications
 - Misuse vs. Anomaly Detection
 - System Example
- Architectures
 - Anomaly Detector
 - Anomaly Models
 - Anomaly Generalization
 - Attack Class Inference
- Evaluation
 - False Positives
 - Performances
- Conclusions
 - **Occupions**
 - **Example 2** Future Work

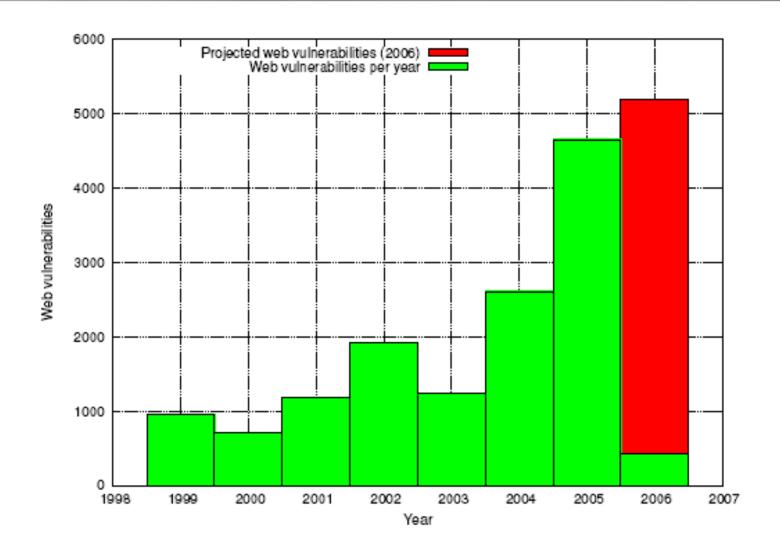
Why are web applications important?

- Web has become a ubiquitous application delivery medium
- Easy to develop, deploy, and access web application
- Unfortunately, also easy to introduce critical security vulnerabilities
 - Lack of awareness of security issues
 - Feature-driven development
 - Time-to-market constraints

Result

Web application vulnerabilities are increasing in number and severity

Reported web-related vulnerabilities [CVE Database]



Why anomaly detection?

- Misuse detection performs well in detecting known attacks directed at widely-deployed targets
- Many web applications, however, are custom-developed and possibly deployed at a handful of sites
- Consequently, custom misuse signatures required
 - Signature development costly, error-prone, and almost never done
- Anomaly detection is able (in theory) to detect novel attacks against custom code
 - Learns (or provided) a profile of normal behavior, and then detects deviations from established profile

Limitations of existing anomaly detectors

- prone to producing false positives
- on indication as to the *nature* of a detected attack

Objective

Prosing *generalization* and *characterization* techniques to mitigate these two shortcomings

Generalization and Characterization example

```
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=256)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=260)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID cdist (dom=\{0x90\})]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID structure (0Aa)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=264)]
ALERT 10.0.0.3 \rightarrow 10.0.0.1 [/cgi-bin/show.cgi?sID structure (0a)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID cdist (dom=\{0x90,0x41\})]
ALERT 10.0.0.3 \rightarrow 10.0.0.1 [/cgi-bin/show.cgi?sID structure (0Aa)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=256)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID cdist (dom=\{0x90,0x41\})]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID cdist (dom=\{0x90\})]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=260)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=264)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID structure (0a)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=256)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID cdist (dom=\{0x90\})]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=256)]
ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=256)]
ALERT 10.0.0.3 \rightarrow 10.0.0.1 [/cgi-bin/show.cgi?sID structure (0a)]
```

Generalization and Characterization example

Cross-site scripting

ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?file attribute length exceeded (len=256)] ...

Buffer overflow

ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID cdist (dom-{0x90})]

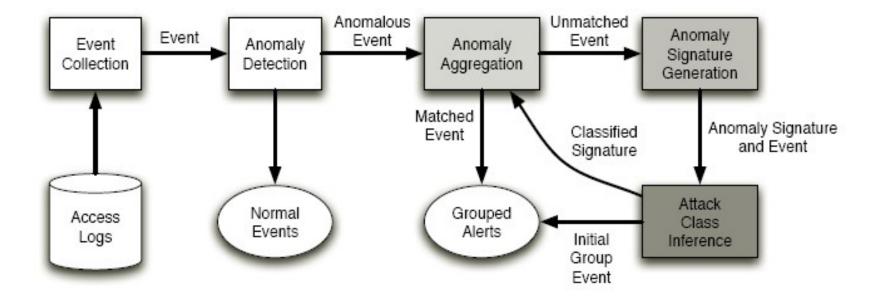
Cross-site scripting

ALERT 10.0.0.3 -> 10.0.0.1 [/cgi-bin/show.cgi?sID structure (0a)] ...

Outline

- Introduction
 - Web Applications
 - Misuse vs. Anomaly Detection
 - System Example
- Architectures
 - Anomaly Detector
 - Anomaly Models
 - Anomaly Generalization
 - Attack Class Inference
- Evaluation
 - False Positives
 - Performances
- Conclusions
 - Conclusions
 - **Example 2** Future Work

Architectural overview



Architectural overview

- Anomaly detector
 - Learns profiles of normal application behavior and detect deviations
- Anomaly signature generator
 - Generates anomaly signatures to group "similar" alerts
- Anomaly aggregator
 - Groups anomalies according to model-specific similarity operations
- Attack classifier
 - Characterizes types of attacks anomalies may represent

Anomaly detection component

- Examines web requests sent from clients to server
 - Application to be executed
 - Application parameters (attribute names and values)

Example

GET /cgi-bin/show.cgi?sID=12345&file=images/foo.png

- Applies statistical models to each attribute of each application in two phases
- Learning: Builds profiles of normal behavior for each application parameter
- Detection : Detects deviations from learned profile

Anomaly detection – Attribute length model

Chebyshev inequality

$$p(|x - \mu| > |I - \mu|) > p(I) = \frac{\sigma^2}{(I - \mu)^2}$$

μ: mean

σ: variance

Observation

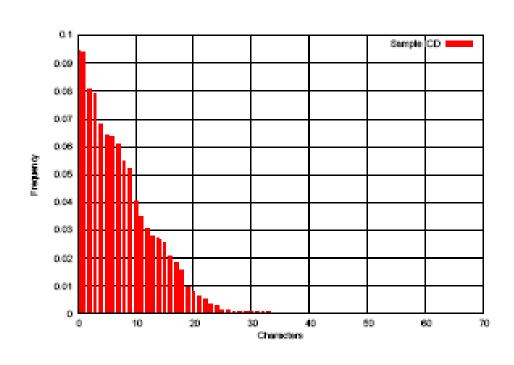
Many attribute values are either fixed in size or vary over a small range

- Model attempts to approximate actual(unknown) distribution of attribute lengths
- Weak bound results in significant tolerance to variations

Anomaly detection – Character distribution

Observation

Many attribute take values that have similar character distribution

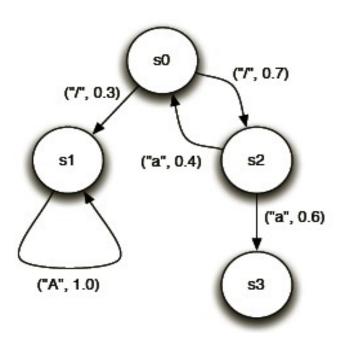


- Model creates idealized character distribution (ICD) for attribute
- **②** Anomaly score calculated using variant of Pearsor χ^2 test

Anomaly detection – Structural inference

Observation

Many attribute values can be modeled as strings generated by a regular grammar

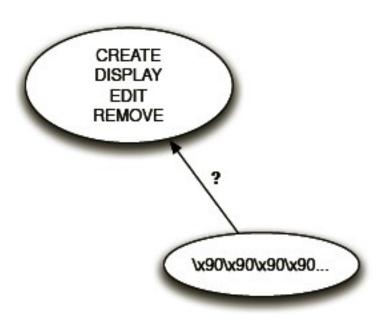


- Model constructs probabilistic grammar from learning set
- Anomaly score calculated as product of transition probabilities along path through NFA for a given value

Anomaly detection – Token finder

Observation

Many attribute takes values that are drawn from a small set of constants



- Model is applied to an attribute if set of unique values observed during learning phase does not grow proportionally to number of requests
- Detection performed by membership test of observed value in learned set of values

Anomaly generalization component

- Anomaly generalization
 - **Onstruction of an abstract model that matches initial anomaly and similar anomalies**
- Parameters for each alerting model for a given anomaly are "relaxed" in a model-specific fashion
- Resulting set of relaxed models are composed to create an anomaly signature
- Model-specific similarity operation used to determine if subsequent anomalies are similar to the initial anomaly

Anomaly generalization – Attribute length

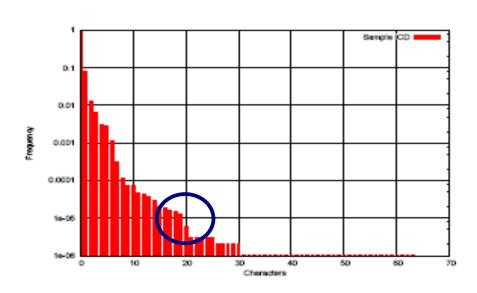
Similarity operator

$$\psi_{\mathsf{attrlen}} \equiv \left| \frac{\sigma^2}{\left(\mathit{l}_{\mathsf{obsv}} - \mu \right)^2} - \frac{\sigma^2}{\left(\mathit{l}_{\mathsf{orig}} - \mu \right)^2} \right| < d_{\mathsf{attrlen}}$$

- Parameters to attribute length model are extracted
- ullet Similarity operation $\psi_{attrlen}$ used to determine if subsequent attribute lengths I_{obsv} are within distance $d_{attrlen}$ from the original anomalous length I_{orig}

Anomaly generalization – Character distribution

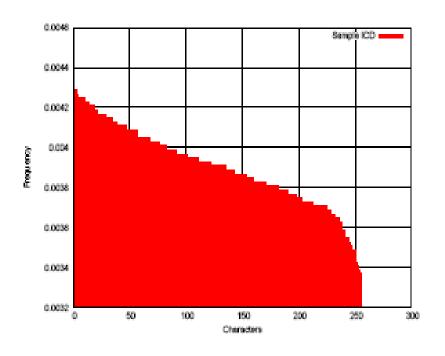
Anomalous character distribution may exhibit a sharp drop-off, indicating a small set of dominating characters



- Set of dominating character and relative frequency pairs is extracted
- Similarity operation ψ_{cdist} tests whether character distributions share at least one dominating character with relative frequencies at most d_{cdist} apart

Anomaly generalization – Character distribution

Anomalous character distribution may be loosely approximated by the uniform distribution



- Set of character and relative frequency pairs is extracted from anomalous ICD
- Similarity operation ψ_{cdist} determines whether the maximum distance between any pair of frequency values from initial and observed character distribution is at most d_{cdist}

Anomaly generalization – Structural inference

Similarity Operator

$$\psi_{\text{structure}} \equiv lex\left(s_{\text{orig}}, s_{\text{obsv}}\right) < d_{\text{structure}}$$

- Prefix of anomalous value, including the first occurrence of an anomalous character, is extracted and normalized according to character class
- Subsequent anomalous values are normalized in the same manner to s_{obsv} and then compared with s_{orig}
- Lexicographical similarity function may be string equality or a string similarity metric

Anomaly generalization – Token finger

Similarity Operator

$$\psi_{\mathsf{token}} \equiv \mathit{lex}\left(\mathit{I}_{\mathsf{orig}},\mathit{I}_{\mathsf{obsv}}\right) < \mathit{d}_{\mathsf{token}}$$

- Anomalous value that failed membership test is extracted
- Lexicographical similarity function (as in case of structural inference) test whether subsequent anomalous values are similar to initial anomaly

Attack class inference

- Intended to address concern that traditional anomaly detector can detect attacks, but cannot easily explain "WHY"
- Observed that well-known classes of attacks deviate from learned profiles in consistent manner
- Component employs ad hoc heuristics to infer the type of attack represented by a detected anomaly
- Heuristics search for general features of a type of attack, not specific attack
 - directory traversal
 - cross-site scripting
 - SQL injection
 - buffer overflows

Attack class inference – Directory traversal

Example

GET /cgi-bin/show.cgi?sID=12345&file=../../../maillog

- Attacker attempts to access unauthorized files by traversing directory tree
- Heuristic activated
 - if ICD dominated by "." or "/"
 - if structural inference model determines underivable character to be "." or "/"
- Heuristic scans for directory traversal characters

Attack class inference – Cross-site scripting

Example

GET /cgi-bin/show.cgi?sID=12345&file=<script>...</script>

- Attacker attempts to embed scripts in pages served by vulnerable server to be executed by other clients
- Heuristic activated
 - if any of structural inference, character distribution, or token finder models generates an alert
- Heuristic scans for common syntactic elements of JavaScript or HTML

Attack class inference - SQL injection

Example

GET /cgi-bin/show.cgi?sID=' or 1=1;--&file=access.log

- Attacker attempts to execute arbitrary SQL queries by exploiting lack of input sanitization
- Heuristic activated
 - if structural inference model generates an alert
- Heuristic scans for SQL language keywords and escape characters

Attack class inference – Buffer overflows

Example

GET /cgi-bin/show.cgi?sID=12345&file=%90%90%90%90%90...

- Attacker attempts to influence control flow of application or corrupt data by overflowing a buffer
- Heuristic activated
 - if character distribution, structural inference, or attribute length model generate an alert
- Variety of techniques may be used to detect executable code (e.g., non-ASCII characters, abstract payload execution, speculative disassembly, etc.)

Outline

- Introduction
 - Web Applications
 - Misuse vs. Anomaly Detection
 - System Example
- Architectures
 - Anomaly Detector
 - Anomaly Models
 - Anomaly Generalization
 - Attack Class Inference
- Evaluation
 - False Positives
 - Performances
- Conclusions
 - **Occupions**
 - **Example 2** Future Work

Evaluation

- Off-line processing of web server logs collected from TU Vienna and UCSB
- Known attacks stripped from data set and attack variations
- System evaluation
 - false positive rate
 - ability to group and characterize alerts
 - performance

Evaluation – False positive rate

Data set	Queries	FP	FPR	FP/day	Groups	Grouped FPR
TUV	737,626	14	1.90×10^{-5}	0.26	2	3.00×10^{-6}
UCSB	35,261	513	1.45×10^{-2}	1.89	3	8.50×10^{-5}

- Low initial false positive rate
- Initial false positive rate further reduced through anomaly aggregation

Evaluation – grouping and characterization

Attack	Mutants	Groups	Alerting models	Characterization	
csSearch	10	1	Length, CDist	XSS	
htmlscript	10	1	Length, Structure	Directory traversal	
imp	10	1	Length, CDist	XSS	
phorum	10	1	Length, CDist, Token	Buffer overflow	
phpnuke	10	1	Length, Structure	SQL injection	
webwho	10	1	Length	None	

- All attack mutations detected
- Most attacks accurately characterized

Evaluation – Performance [time]

Data set	Requests	Request rate	Elapsed time	Analysis rate
TUV	737,626	0.107095 req/sec	934 sec	788.06 req/sec
UCSB	35,261	0.001360 req/sec	64 sec	550.95 req/sec

- Deployable in standalone mode for low to medium traffic sites
- Cluster configuration possible for higher traffic sites

Conclusions

- Major limitations of anomaly detectors can be mitigated through use of generalization and characterization techniques
 - Constructing an abstract description of an anomaly allows system to group similar anomalies, reducing effective false positive rate
 - Inferring the nature of an anomaly assists administrators and developers in analyzing & patching novel vulnerabilities
- Anomaly aggregation component successfully grouped both false positive and mutated attacks in real-world data sets
- Attack inference component successfully characterized most attacks

Future work

- Apply the techniques to additional models
- Investigate alternative techniques for generalizing anomalies
- Improve attack inference technique
 - More sophisticated heuristics
 - Apply Bayesian techniques to infer attacks based on model outputs as evidence nodes
- Extend system to other domains (e.g., syscall arguments)

Any questions?